Convergence: The Promise and Reality of AI & Quantum November 14, 2022

# Introduction to Quantum Computing William D. Oliver william.oliver@mit.edu







### 2<sup>nd</sup> Quantum Revolution

#### **Quantum Information Science and Technology**





Quantum 2.0 utilizes quantum mechanics to sense, communicate, and process information in ways unobtainable by conventional, classical means





Quantum computing is transitioning from scientific curiosity to technical reality.

Advancing from discovery to useful machines takes time & engineering

You must be in the game to play



### **Nascent Commercial Quantum Processors**







#### **Classical Computer**

| Fundamental<br>logic element | "Bit" : classical bit<br>(transistor, spin in magnetic memory, …)                                             |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| State                        | 0 "Or" 1                                                                                                      |  |  |
| Measurement                  | <ul> <li><i>Discrete</i> states</li> <li>Deterministic measurement:<br/>Ex: Set as 1, measure as 1</li> </ul> |  |  |



|                              | <b>Classical Computer</b>                                                                              | Quantum Computer                                                                                                                                                                                       |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fundamental<br>logic element | "Bit" : classical bit<br>(transistor, spin in magnetic memory, …)                                      | "Qubit" : quantum bit<br>(any coherent two-level system)                                                                                                                                               |  |  |
| State                        | 0 "Or" 1                                                                                               | $ 0\rangle \qquad Superposition: \\ \alpha 0\rangle + \beta 1\rangle \\  0\rangle \qquad (And"  1) \\  \psi\rangle = \alpha \begin{bmatrix}1\\0\end{bmatrix} + \beta \begin{bmatrix}0\\1\end{bmatrix}$ |  |  |
| Measurement                  | <ul> <li>Discrete states</li> <li>Deterministic measurement:<br/>Ex: Set as 1, measure as 1</li> </ul> | <ul> <li>Superposition states</li> <li>Probabilistic measurement:<br/>Ex: If  α  =  β , 50%  0&gt;, 50%  1&gt;</li> </ul>                                                                              |  |  |

Quantum computers rely on encoding information in a fundamentally different way than classical computers

| MIT |  |
|-----|--|
| 75  |  |
|     |  |

\_ \_ \_ \_

#### **Classical Computer Fundamental** "Bit" : classical bit (transistor, spin in magnetic memory, ...) logic element N bits: One N-bit state ٠ 000, 001, ..., 111 (N = 3) Change a bit: new calculation ٠ Computing (classical parallelism) 000 f(000) 001 (001)

#### Oliver - 7 MIT CQE – © 2022



|                              | <b>Classical Computer</b>                                                                                                                  | Quantum Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fundamental<br>logic element | "Bit" : classical bit<br>(transistor, spin in magnetic memory,)                                                                            | "Qubit" : quantum bit<br>(any coherent two-level system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Computing                    | <ul> <li>N bits: One N-bit state</li> <li>000, 001,, 111 (N = 3)</li> <li>Change a bit: new calculation (classical parallelism)</li> </ul> | <ul> <li>N qubits: 2<sup>N</sup> components to one state <ul> <li>α 000⟩ + β 001⟩ + ··· + γ 111⟩ (N = 3)</li> </ul> </li> <li>Quantum parallelism &amp; interference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                              | $000 \longrightarrow \bigcup \longrightarrow f(000)$ $001 \longrightarrow \bigcup \longrightarrow f(001)$                                  | $ \begin{array}{c c} \alpha & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} & \uparrow \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \end{array} $ |  |  |

How do we take advantage of this hardware?





Oliver - 9 MIT CQE – © 2022





Oliver - 10 MIT CQE – © 2022 M. Kjaergaard, WDO, et al., Annual Reviews of CMP 11, 369-395 (2020)

## CQE Ingredients for Commercial Quantum Advantage



Small region where useful quantum algorithms exist (as we know them today)

Oliver - 11 MIT CQE - © 2022





Oliver - 12 MIT CQE - © 2022



Exponential Growth: Doubling Pennies Every Day for 1 Month

| SUN        | MON | TUE | WED | THU | FRI | SAT |
|------------|-----|-----|-----|-----|-----|-----|
| <b>2</b> 1 | 2   | 3   | 4   | 5   | 6   | 7   |
| 8          | 9   | 10  | 11  | 12  | 13  | 14  |
| 15         | 16  | 17  | 18  | 19  | 20  | 21  |
| 22         | 23  | 24  | 25  | 26  | 27  | 28  |
| 29         | 30  | 31  |     |     |     |     |



2<sup>0</sup> = 1 penny

 $2^{1} = 2$  pennies  $2^{2} = 4$  pennies  $2^{3} = 8$  pennies

After 31 days, would you take the pennies or \$10M?

Oliver - 13 MIT CQE - © 2022



Exponential Growth: Doubling Pennies Every Day for 1 Month





2<sup>0</sup> = 1 penny

 $2^{1} = 2$  pennies  $2^{2} = 4$  pennies  $2^{3} = 8$  pennies

2<sup>31</sup> = 2,147,483,648 pennies > \$21M !!

Oliver - 14 MIT CQE – © 2022











| Qubits | Size of simulator |
|--------|-------------------|
| 30     | laptop            |
| 50     | supercomputer     |
|        |                   |
|        |                   |
|        |                   |





| Qubits | Size of simulator      |
|--------|------------------------|
| 30     | laptop                 |
| 50     | supercomputer          |
| 80     | all computers on Earth |
|        |                        |
|        |                        |





| Qubits | Size of simulator      |
|--------|------------------------|
| 30     | laptop                 |
| 50     | supercomputer          |
| 80     | all computers on Earth |
| 160    | all Si atoms in Earth  |
|        |                        |





| Qubits | Size of simulator                  |
|--------|------------------------------------|
| 30     | laptop                             |
| 50     | supercomputer                      |
| 80     | all computers on Earth             |
| 160    | all Si atoms in Earth              |
| 300    | > all atoms than in known universe |



| Algorithm                                                | Classical Time                | Quantum Time   | Speedup                                          | Limitation                               |
|----------------------------------------------------------|-------------------------------|----------------|--------------------------------------------------|------------------------------------------|
| Simulation <sup>1</sup><br>(quantum chemistry)           | 2 <sup>N</sup> (for N atoms)  | Nc             | N <sup>c</sup> Exp. in space, polynomial in time |                                          |
| Factoring <sup>2</sup><br>(+ related number theoretic)   | 2 <sup>N</sup> (for N digits) | N <sup>3</sup> | Exponential                                      | Classical runtime<br>limit unproven      |
| Linear systems <sup>3</sup><br>(Ax=b)                    | 2 <sup>N</sup> (for N digits) | ~N             | Exponential                                      | Strict conditions,<br>e.g. sparse matrix |
| <b>Optimization</b> <sup>4</sup>                         | 2 <sup>N</sup>                | ?              | ?                                                | Empirical                                |
| Search <sup>5</sup><br>(unsorted / unstructured<br>data) | Ν                             | $\sqrt{N}$     | <b>Polynomial</b> $(\sqrt{N})$                   | Data loading                             |



Peter Shor<sup>1</sup> Math



Seth Lloyd <sup>2,3</sup> *Ike Chuang*<sup>1</sup> Mech. Eng. EECS, Physics

Aram Harrow<sup>3</sup>



*Eddie Farhi*<sup>4</sup> Physics, Google









Michael Carbin Troy Van Voorhis EECS Chemistry

*Physics* 

Michael Sipser<sup>4</sup> Anand Natarjan EECS Math





**Gate time t**gate: Time required for a single gate operation

**Figure of Merit** \* : # of gates per coherence time =  $t_{coh}/t_{gate}$ 

(\* Rigorous metric: gate & readout fidelity)

Long coherence times are not sufficient, it's the number of gates before an error

Oliver - 21 MIT CQE – © 2022

### **Qubit Modalities**

(extensible platforms, benchmarked, ca. 2019)





### **Qubit Modalities**

#### (extensible platforms, benchmarked, ca. 2019)







Vladin Vuletic MIT Physics



Martin Zwierlein MIT Physics





**MIT Physics** 



Dirk Englund EECS

l Paola Cappellaro NSE

Danielle Braje QuIIN

Many candidate technologies under development to realize the promise of quantum computation

### **Quantum Worldwide**

#### (not an exhaustive list)





### **Quantum Worldwide**

#### (not an exhaustive list)







### <u>Mission Statement:</u>

 Academic pursuit and practice of quantum science & engineering to accelerate the practical application of quantum technology

#### Objectives:

- Define quantum engineering
- Educate tomorrow's quantum engineers
- Partner with industry via consortium model
- Advance quantum science and engineering



#### MIT Center for Quantum Engineering (MIT-CQE) The MIT-CQE is a platform for research, education, and engagement in support of *quantum engineering* – a new discipline bridging quantum science and engineering to accelerate the development of quantum technologies.





## **CQE Membership (partial list)**







Terry Orlando Simon Gustavsson EECS RLE



Jamie Kerman Kevin O'Brien Kevin Obenland Lincoln EECS

Ike Chuang EECS, Physics Lincoln

Rajeev Ram EECS

John Chiaverini Jeremy Sage Lincoln RLE & Lincoln

Eric Dauler Lincoln





Jeff Shapiro EECS



Ben Dixon Lincoln



Scott Hamilton Lincoln



Dirk Englund Paola Cappellaro Danielle Braje EECS NSE







Peter Shor



Seth Lloyd Mech. Eng. & Physics



Marc Baldo EECS



RLE

Tim Swager Chemistry



Bombarelli - MS





Joe Formaggio Riccardo Comin *Physics* 



**Physics** 

Lincoln





Math

Pablo J-Herrero

**Physics** 





Eddie Farhi Aram Harrow Google/Physics **Physics** 







- MIT xPRO professional development courses
  - Sponsored by IBM
  - Fundamentals of Quantum Computing
  - Practical Realities of Quantum Computing
- CQE LPS "Doc Bedard" Program
  - 3-year graduate fellowships
  - Sponsored research programs
  - Quantum curriculum development
- QSEC Industry Membership Group



Fernand "Doc" Bedard NSA Laboratory for Physical Sciences



#### **Professional Development Courses**

https://learn-xpro.mit.edu/quantum-computing





Peter Shor

Will Oliver Ike Chuang

Aram Harrow

#### MIT'S QUANTUM SCIENCE AND ENGINEERING CONSORTIUM ECOSYSTEM



MIT'S QUANTUM SCIENCE AND ENGINEERING CONSORTIUM MEMBERS 2022



### **QSEC Algorithm Program**





Oliver - 30 MIT CQE - © 2022

## **Interdisciplinary Quantum Engineering**





Quantum Engineering is the bridge connecting science, mathematics, and classical engineering

Oliver - 31 MIT CQE - © 2022 Convergence: The Promise and Reality of AI & Quantum November 14, 2022

To realize the promise of quantum computing, we need to

- Develop algorithms with commercial quantum advantage
- Develop error-resilient hardware
- Avoid the over-hype and create the reality

We need your help to do this! William D. Oliver william.oliver@mit.edu









The Google Quantum AI team demonstrated

a calculation in ~200s with one chip, 53 superconducting qubits, drawing around 100 kW of power

On the Summit supercomputer (Oak Ridge National Laboratory),

it would take several days, with all 40,000 CPUs & GPUs, 10<sup>17</sup> transistors & memory, and 100's MW of power

Oliver - 33 MIT CQE - © 2022

Google Al, Nature 505, 574 (2019); USTC, arXiv:2109.03494 (2021)

Oliver - 34

### **Superconducting Qubits**





M. Kjaergaard, M. Schwartz, ..., WDO, PRX 12, 011005 (2022) Y. Sung, ..., WDO, PRX 11, 021058 (2021) MIT CQE - © 2022

**2D Arrays of Qubits** Lattices, Error Propagation, Coherent Errors, ...



Y. Yanay, ..., WDO, C. Tahan, npj Quantum Information (2020) J. Braumueller, A. Karamlou, Y. Yanay, ..., C. Tahan, WDO Nature Physics (2022), npj Quantum Information (2021)

### **3D Integration for Quantum Processors**

#### **IARPA** Quantum Enhanced Optimization





Oliver - 35 MIT CQE - © 2022